1. In a metric space (X, d), prove that any open ball is an open set, and any closed ball is a closed set.

2. In a metric space (X, d), for any $M \subset X$, prove that Int(M) is an open set.

Hint: For any $x \in \text{Int}(M)$, from the definition of interiors, there exists $\varepsilon > 0$ such that $B(x;\varepsilon) \subset M$. Based on this, prove the following first: For any $y \in B(x;\varepsilon/3)$, $B(y;\varepsilon/3) \subset B(x;\varepsilon)$.

3. In a metric space (X, d), use \mathcal{T} to denote the collection of all the open sets. Prove that we have the following properties for \mathcal{T} :

- i) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- ii) Let \mathscr{A} be an index set, and assume $S_i \in \mathcal{T}$ for all $i \in \mathscr{A}$. Then $\bigcup_{i \in \mathscr{A}} S_i \in \mathcal{T}$.
- iii) Let K_1, \dots, K_n be in \mathcal{T} . Then $\bigcap_{i=1}^n K_i \in \mathcal{T}$.

Remark: These three properties above give an abstract characterization of "open sets" in topological spaces.

Proof. Let D be an open ball, say D = B(x; r) for certain $x \in X$ and r > 0. We will show that D is open. In fact, for each $y \in D$, just note that

$$B(y; r - d(y, x)) \subset B(x; r) = D,$$

we are done.

Let K be a closed ball. We can assume that

$$K = \{x \in K \colon d(x, a) \le r\}$$

for certain $a \in X$ and r > 0.

To show that D is closed, we just need to show that X - D is open. In fact, for any $y \notin D$, we have d(y, a) > r. It then follows that

$$B(y, d(y, a) - r) \subset X - D,$$

which finishes the proof.

2. Just follow the hint, and it should be straightforward (using the triangle inequality of distance structure).

3.

Proof. i) From the definiton of open sets, \emptyset is open (why?).

For any $x \in X$, we always have $B(x; 1) \subset X$. Thus X is open.

ii) If $x \in \bigcap_{i \in \mathscr{A}} S_i$, then $x \in S_n$ for certain $n \in \mathscr{A}$. As S_n is open, there exists r > 0, such that $B(x;r) \subset S_n$. Thus $B(x;r) \subset \bigcup_{i \in \mathscr{A}} S_i$, which indicates that $\bigcup_{i \in \mathscr{A}} S_i$ is open.

$$B(x;r_i) \subset K_i, \quad \forall 1 \le i \le n.$$

Take $r = \min\{r_1, \cdots, r_n\}$, then

$$B(x;r) \subset K_i, \quad \forall 1 \le i \le n,$$

which indicates that

$$B(x;r) \subset \bigcap_{i=1}^n K_i.$$

Thus $\bigcap_{i=1}^{n} K_i$ is open. Done.